博客
关于我
sigmoid函数求导与自然指数
阅读量:126 次
发布时间:2019-02-26

本文共 828 字,大约阅读时间需要 2 分钟。

在神经网络中,sigmoid函数作为激活函数广泛应用于层之间的转换。了解其导数对梯度下降过程至关重要。以下是关于sigmoid函数求导的详细说明。

sigmoid函数的定义

sigmoid函数定义为:[ f(z) = \frac{1}{1 + e^{-z}} ]该函数将实数映射到区间[0, 1],常用于逻辑分类任务。

导数的推导过程

要计算sigmoid函数的导数,我们可以从函数表达式出发,逐步求导。

  • 函数的基本形式

    [ f(z) = \frac{1}{1 + e^{-z}} ]

  • 复合函数的求导法则

    将sigmoid函数视为复合函数:[ f(z) = (1 + e^{-z})^{-1} ]

  • 应用链式法则

    根据链式法则,求导数时需要逐层拆解:[ f'(z) = f(z) \cdot f'(z) ]

  • 求导关键步骤

    通过逐步求导得出:[ f'(z) = \frac{d}{dz} \left( (1 + e^{-z})^{-1} \right) ][ = -1 \cdot (1 + e^{-z})^{-2} \cdot \frac{d}{dz}(1 + e^{-z}) ][ = - (1 + e^{-z})^{-2} \cdot e^{-z} ]

  • 简化表达式

    注意到:[ \frac{d}{dz}(1 + e^{-z}) = e^{-z} ]因此:[ f'(z) = - \frac{e^{-z}}{(1 + e^{-z})^2} ][ = \frac{e^{-z}}{(1 + e^{-z})^2} ]

  • 导数的应用意义

    sigmoid函数的导数在训练神经网络时用于计算误差梯度。通过上述推导,我们可以清晰地看到:[ f'(z) = f(z) \cdot (1 - f(z)) ]这表明导数在[0, 1]区间内始终非负,反映了sigmoid函数的饱和特性。

    通过以上步骤,我们深入理解了sigmoid函数的导数及其推导过程,这对实际应用有重要意义。

    转载地址:http://wkuk.baihongyu.com/

    你可能感兴趣的文章
    MYSQL8.0以上忘记root密码
    查看>>
    Mysql8.0以上重置初始密码的方法
    查看>>
    mysql8.0新特性-自增变量的持久化
    查看>>
    Mysql8.0注意url变更写法
    查看>>
    Mysql8.0的特性
    查看>>
    MySQL8修改密码报错ERROR 1819 (HY000): Your password does not satisfy the current policy requirements
    查看>>
    MySQL8修改密码的方法
    查看>>
    Mysql8在Centos上安装后忘记root密码如何重新设置
    查看>>
    Mysql8在Windows上离线安装时忘记root密码
    查看>>
    MySQL8找不到my.ini配置文件以及报sql_mode=only_full_group_by解决方案
    查看>>
    mysql8的安装与卸载
    查看>>
    MySQL8,体验不一样的安装方式!
    查看>>
    MySQL: Host '127.0.0.1' is not allowed to connect to this MySQL server
    查看>>
    Mysql: 对换(替换)两条记录的同一个字段值
    查看>>
    mysql:Can‘t connect to local MySQL server through socket ‘/var/run/mysqld/mysqld.sock‘解决方法
    查看>>
    MYSQL:基础——3N范式的表结构设计
    查看>>
    MYSQL:基础——触发器
    查看>>
    Mysql:连接报错“closing inbound before receiving peer‘s close_notify”
    查看>>
    mysqlbinlog报错unknown variable ‘default-character-set=utf8mb4‘
    查看>>
    mysqldump 参数--lock-tables浅析
    查看>>