博客
关于我
sigmoid函数求导与自然指数
阅读量:126 次
发布时间:2019-02-26

本文共 828 字,大约阅读时间需要 2 分钟。

在神经网络中,sigmoid函数作为激活函数广泛应用于层之间的转换。了解其导数对梯度下降过程至关重要。以下是关于sigmoid函数求导的详细说明。

sigmoid函数的定义

sigmoid函数定义为:[ f(z) = \frac{1}{1 + e^{-z}} ]该函数将实数映射到区间[0, 1],常用于逻辑分类任务。

导数的推导过程

要计算sigmoid函数的导数,我们可以从函数表达式出发,逐步求导。

  • 函数的基本形式

    [ f(z) = \frac{1}{1 + e^{-z}} ]

  • 复合函数的求导法则

    将sigmoid函数视为复合函数:[ f(z) = (1 + e^{-z})^{-1} ]

  • 应用链式法则

    根据链式法则,求导数时需要逐层拆解:[ f'(z) = f(z) \cdot f'(z) ]

  • 求导关键步骤

    通过逐步求导得出:[ f'(z) = \frac{d}{dz} \left( (1 + e^{-z})^{-1} \right) ][ = -1 \cdot (1 + e^{-z})^{-2} \cdot \frac{d}{dz}(1 + e^{-z}) ][ = - (1 + e^{-z})^{-2} \cdot e^{-z} ]

  • 简化表达式

    注意到:[ \frac{d}{dz}(1 + e^{-z}) = e^{-z} ]因此:[ f'(z) = - \frac{e^{-z}}{(1 + e^{-z})^2} ][ = \frac{e^{-z}}{(1 + e^{-z})^2} ]

  • 导数的应用意义

    sigmoid函数的导数在训练神经网络时用于计算误差梯度。通过上述推导,我们可以清晰地看到:[ f'(z) = f(z) \cdot (1 - f(z)) ]这表明导数在[0, 1]区间内始终非负,反映了sigmoid函数的饱和特性。

    通过以上步骤,我们深入理解了sigmoid函数的导数及其推导过程,这对实际应用有重要意义。

    转载地址:http://wkuk.baihongyu.com/

    你可能感兴趣的文章
    Nacos服务注册总流程(源码分析)
    查看>>
    nacos服务注册流程
    查看>>
    Nacos服务部署安装
    查看>>
    nacos本地可以,上服务器报错
    查看>>
    Nacos注册Dubbo(2.7.x)以及namespace配置
    查看>>
    Nacos注册中心有几种调用方式?
    查看>>
    nacos注册失败,Feign调用失败,feign无法注入成我们的bean对象
    查看>>
    nacos源码 nacos注册中心1.4.x 源码 nacos源码如何下载 nacos 客户端源码下载地址 nacos discovery下载地址(一)
    查看>>
    nacos源码 nacos注册中心1.4.x 源码 spring cloud alibaba 的discovery做了什么 nacos客户端是如何启动的(二)
    查看>>
    Nacos简介、下载与配置持久化到Mysql
    查看>>
    Nacos简介和控制台服务安装
    查看>>
    Nacos管理界面详细介绍
    查看>>
    Nacos编译报错NacosException: endpoint is blank
    查看>>
    nacos自动刷新配置
    查看>>
    nacos运行报错问题之一
    查看>>
    Nacos部署中的一些常见问题汇总
    查看>>
    NACOS部署,微服务框架之NACOS-单机、集群方式部署
    查看>>
    Nacos配置Mysql数据库
    查看>>
    Nacos配置中心中配置文件的创建、微服务读取nacos配置中心
    查看>>
    Nacos配置中心集群原理及源码分析
    查看>>